Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0285691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796914

RESUMO

Introducing SimpliPyTEM, a Python library and accompanying GUI that simplifies the post-acquisition evaluation of transmission electron microscopy (TEM) images, helping streamline the workflow. After an imaging session, a folder of image and/or video files, typically containing low contrast and large file size 32-bit images, can be quickly processed via SimpliPyTEM into high-quality, high-contrast.jpg images with suitably sized scale bars. The app can also generate HTML or PDF files containing the processed images for easy viewing and sharing. Additionally, SimpliPyTEM specifically focuses on in situ TEM videos, an emerging field of EM involving the study of dynamic processes whilst imaging. The package allows fast data processing into preview movies, averages, image series, or motion-corrected averages. The accompanying Python library offers many standard image processing methods, all simplified to a single command, plus a module to analyse particle morphology and population. This latter application is particularly useful for life sciences investigations. User-friendly tutorials and clear documentation are included to help guide users through the processing and analysis. We invite the EM community to contribute to and further develop this open-source package.


Assuntos
Aplicativos Móveis , Software , Microscopia Eletrônica de Transmissão , Processamento de Imagem Assistida por Computador/métodos
2.
Macromol Biosci ; 23(8): e2300068, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315231

RESUMO

A bottom-up approach to fabricating monodisperse, two-component polymersomes that possess phase-separated ("patchy") chemical topology is presented. This approach is compared with already-existing top-down preparation methods for patchy polymer vesicles, such as film rehydration. These findings demonstrate a bottom-up, solvent-switch self-assembly approach that produces a high yield of nanoparticles of the target size, morphology, and surface topology for drug delivery applications, in this case patchy polymersomes of a diameter of ≈50 nm. In addition, an image processing algorithm to automatically calculate polymersome size distributions from transmission electron microscope images based on a series of pre-processing steps, image segmentation, and round object identification is presented.


Assuntos
Nanopartículas , Polímeros , Sistemas de Liberação de Medicamentos , Microscopia , Solventes
3.
Angew Chem Int Ed Engl ; 62(8): e202208681, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469792

RESUMO

Supramolecular systems chemistry has been an area of active research to develop nanomaterials with life-like functions. Progress in systems chemistry relies on our ability to probe the nanostructure formation in solution. Often visualizing the dynamics of nanostructures which transform over time is a formidable challenge. This necessitates a paradigm shift from dry sample imaging towards solution-based techniques. We review the application of state-of-the-art techniques for real-time, in situ visualization of dynamic self-assembly processes. We present how solution-based techniques namely optical super-resolution microscopy, solution-state atomic force microscopy, liquid-phase transmission electron microscopy, molecular dynamics simulations and other emerging techniques are revolutionizing our understanding of active and adaptive nanomaterials with life-like functions. This Review provides the visualization toolbox and futuristic vision to tap the potential of dynamic nanomaterials.

4.
Brain Commun ; 4(1): fcac039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35233527

RESUMO

A deficient transport of amyloid-ß across the blood-brain barrier, and its diminished clearance from the brain, contribute to neurodegenerative and vascular pathologies, such as Alzheimer's disease and cerebral amyloid angiopathy, respectively. At the blood-brain barrier, amyloid-ß efflux transport is associated with the low-density lipoprotein receptor-related protein 1. However, the precise mechanisms governing amyloid-ß transport across the blood-brain barrier, in health and disease, remain to be fully understood. Recent evidence indicates that the low-density lipoprotein receptor-related protein 1 transcytosis occurs through a tubulation-mediated mechanism stabilized by syndapin-2. Here, we show that syndapin-2 is associated with amyloid-ß clearance via low-density lipoprotein receptor-related protein 1 across the blood-brain barrier. We further demonstrate that risk factors for Alzheimer's disease, amyloid-ß expression and ageing, are associated with a decline in the native expression of syndapin-2 within the brain endothelium. Our data reveals that syndapin-2-mediated pathway, and its balance with the endosomal sorting, are important for amyloid-ß clearance proposing a measure to evaluate Alzheimer's disease and ageing, as well as a target for counteracting amyloid-ß build-up. Moreover, we provide evidence for the impact of the avidity of amyloid-ß assemblies in their trafficking across the brain endothelium and in low-density lipoprotein receptor-related protein 1 expression levels, which may affect the overall clearance of amyloid-ß across the blood-brain barrier.

5.
Biomacromolecules ; 22(12): 5052-5064, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34762395

RESUMO

Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.


Assuntos
Micelas , Nanopartículas , Géis , Nanopartículas/química , Polietilenoglicóis/química , Polimerização
6.
Adv Mater ; 32(39): e2003901, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32815192

RESUMO

The visualization of microtubules by combining optical and electron microscopy techniques provides valuable information to understand correlated intracellular activities. However, the lack of appropriate probes to bridge both microscopic resolutions restricts the areas and structures that can be comprehended within such highly assembled structures. Here, a versatile cyclometalated iridium (III) complex is designed that achieves synchronous fluorescence-electron microscopy correlation. The selective insertion of the probe into a microtubule triggers remarkable fluorescence enhancement and promising electron contrast. The long-life, highly photostable probe allows live-cell super-resolution imaging of tubulin localization and motion with a resolution of ≈30 nm. Furthermore, correlative light-electron microscopy and energy-filtered transmission electron microscopy reveal the well-associated optical and electron signal at a high specificity, with an interspace of ≈41 Å of microtubule monomer in cells.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Irídio/química , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Linhagem Celular , Humanos
7.
Soft Matter ; 16(19): 4569-4573, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32373877
8.
Pharmaceutics ; 11(11)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731713

RESUMO

Glucocorticoid (GC) drugs are the cornerstone therapy used in the treatment of inflammatory diseases. Here, we report pH responsive poly(2-methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylamino)ethyl methacrylate) (PMPC-PDPA) polymersomes as a suitable nanoscopic carrier to precisely and controllably deliver GCs within inflamed target cells. The in vitro cellular studies revealed that polymersomes ensure the stability, selectivity and bioavailability of the loaded drug within macrophages. At molecular level, we tested key inflammation-related markers, such as the nuclear factor-κB, tumour necrosis factor-α, interleukin-1ß, and interleukin-6. With this, we demonstrated that pH responsive polymersomes are able to enhance the anti-inflammatory effect of loaded GC drug. Overall, we prove the potential of PMPC-PDPA polymersomes to efficiently promote the inflammation shutdown, while reducing the well-known therapeutic limitations in GC-based therapy.

9.
Chem Asian J ; 14(4): 509-526, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30716209

RESUMO

Zinc is a biocompatible element that exists as the second most abundant transition metal ion and an indispensable trace element in the human body. Compared to traditional metal-organic complexes systems, d10 metal ZnII complexes not only exhibit a large Stokes shift and good photon stability but also possess strong emission and low cytotoxicity with a relatively small molecular weight. The use of ZnII complexes has emerged in the last decade as a versatile and convenient tool for numerous biological applications, including bioimaging, molecular and protein recognition, as well as photodynamic therapy. Herein, we review recent developments involving ZnII metal complexes applied as specific subcellular compartment imaging probes and their correlated utilizations.


Assuntos
Complexos de Coordenação/farmacologia , Corantes Fluorescentes/farmacologia , Zinco/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacologia , Complexos de Coordenação/química , Corantes Fluorescentes/química , Humanos , Membranas Intracelulares/metabolismo , Microscopia Confocal/métodos , Espectrometria de Fluorescência/métodos
10.
Angew Chem Int Ed Engl ; 58(14): 4581-4586, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30720233

RESUMO

The synthesis and aqueous self-assembly of a new class of amphiphilic aliphatic polyesters are presented. These AB block polyesters comprise polycaprolactone (hydrophobe) and an alternating polyester from succinic acid and an ether-substituted epoxide (hydrophile). They self-assemble into biodegradable polymersomes capable of entering cells. Their degradation products are bioactive, giving rise to differentiated cellular responses inducing stromal cell proliferation and macrophage apoptosis. Both effects emerge only when the copolymers enter cells as polymersomes and their magnitudes are size dependent.


Assuntos
Poliésteres/metabolismo , Tensoativos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/química , Fibroblastos/metabolismo , Humanos , Hidrólise , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Poliésteres/química , Poliésteres/farmacologia , Propriedades de Superfície , Tensoativos/química , Tensoativos/farmacologia
11.
Biomaterials ; 192: 26-50, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30419394

RESUMO

Life and biological units are the result of the supramolecular arrangement of many different types of molecules, all of them combined with exquisite precision to achieve specific functions. Taking inspiration from the design principles of nature allows engineering more efficient and compatible biomaterials. Indeed, bionic (from bion-, unit of life and -ic, like) materials have gained increasing attention in the last decades due to their ability to mimic some of the characteristics of nature systems, such as dynamism, selectivity, or signalling. However, there are still many challenges when it comes to their interaction with the human body, which hinder their further clinical development. Here we review some of the recent progress in the field of molecular bionics with the final aim of providing with design rules to ensure their stability in biological media as well as to engineer novel functionalities which enable navigating the human body.


Assuntos
Materiais Biocompatíveis/química , Biônica/métodos , Animais , Bioengenharia/métodos , Materiais Biomiméticos/química , Biomimética/métodos , Humanos , Modelos Moleculares
12.
iScience ; 7: 132-144, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267675

RESUMO

Polymersomes are vesicles formed by the self-assembly of amphiphilic copolymers in water. They represent one of the most promising alternatives of natural vesicles as they add new possibilities in the amphiphiles' molecular engineering of aqueous compartments. Here we report the design of polymersomes using a bottom-up approach wherein self-assembly of amphiphilic copolymers poly(2-(methacryloyloxy) ethyl phosphorylcholine)-poly(2-(diisopropylamino) ethyl methacrylate) (PMPC-PDPA) into membranes is tuned using pH and temperature. We report evolution from disk micelles, to vesicles, to high-genus vesicles (vesicles with many holes), where each passage is controlled by pH switch or temperature. We show that the process can be rationalized, adapting membrane physics theories to disclose scaling principles that allow the estimation of minimal radius of vesiculation as well as chain entanglement and coupling. This approach allows us to generate nanoscale vesicles with genus from 0 to 70, which have been very elusive and difficult to control so far.

13.
Chemphyschem ; 19(16): 1987-1989, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29763524

RESUMO

Polymeric vesicles, also called polymersomes, are highly efficient biomimetic systems. They can generate compartmentalized volumes at the nanoscale supported by synthetic amphiphilic membranes that closely mimic their biological counterparts. Membrane permeability and the ability to separate extreme pH gradients is a crucial condition a successful biomimetic system must meet. We show that polymersomes formed by non-ionic polybutadiene-b-polyethylene oxide (PBd-b-PEO) amphiphilic block copolymers engineer robust and stable membranes that are able to sustain pH gradients of 10 for a minimum of eight days. The cells' endo-lysomal compartments separate gradients between three and one, while we generated a pH gradient of threefold as great. This feature clearly is of great importance for applications as nanoreactors and drug-delivery systems where separating different aqueous volumes at the nanoscale level is an essential requirement.


Assuntos
Butadienos/química , Elastômeros/química , Polietilenoglicóis/química , Tensoativos/química , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Nanopartículas/química
14.
Sci Adv ; 3(8): e1700362, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28782037

RESUMO

In recent years, scientists have created artificial microscopic and nanoscopic self-propelling particles, often referred to as nano- or microswimmers, capable of mimicking biological locomotion and taxis. This active diffusion enables the engineering of complex operations that so far have not been possible at the micro- and nanoscale. One of the most promising tasks is the ability to engineer nanocarriers that can autonomously navigate within tissues and organs, accessing nearly every site of the human body guided by endogenous chemical gradients. We report a fully synthetic, organic, nanoscopic system that exhibits attractive chemotaxis driven by enzymatic conversion of glucose. We achieve this by encapsulating glucose oxidase alone or in combination with catalase into nanoscopic and biocompatible asymmetric polymer vesicles (known as polymersomes). We show that these vesicles self-propel in response to an external gradient of glucose by inducing a slip velocity on their surface, which makes them move in an extremely sensitive way toward higher-concentration regions. We finally demonstrate that the chemotactic behavior of these nanoswimmers, in combination with LRP-1 (low-density lipoprotein receptor-related protein 1) targeting, enables a fourfold increase in penetration to the brain compared to nonchemotactic systems.


Assuntos
Barreira Hematoencefálica/metabolismo , Quimiotaxia , Polímeros/química , Polímeros/metabolismo , Algoritmos , Transporte Biológico , Difusão , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Humanos , Modelos Teóricos , Nanoestruturas/química , Nanotecnologia , Polímeros/síntese química
15.
Sci Adv ; 2(4): e1500948, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27152331

RESUMO

Biological systems exploit self-assembly to create complex structures whose arrangements are finely controlled from the molecular to mesoscopic level. We report an example of using fully synthetic systems that mimic two levels of self-assembly. We show the formation of vesicles using amphiphilic copolymers whose chemical nature is chosen to control both membrane formation and membrane-confined interactions. We report polymersomes with patterns that emerge by engineering interfacial tension within the polymersome surface. This allows the formation of domains whose topology is tailored by chemical synthesis, paving the avenue to complex supramolecular designs functionally similar to those found in viruses and trafficking vesicles.


Assuntos
Biomimética , Vesículas Extracelulares/química , Polímeros/química , Engenharia Celular , Propriedades de Superfície
16.
Sci Rep ; 5: 14311, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26391797

RESUMO

As the development of diagnostic/therapeutic (and combined: theranostic) nanomedicine grows, smart drug-delivery vehicles become ever more critical. Currently therapies consist of drugs tethered to, or encapsulated within nanoparticles or vesicles. There is growing interest in functionalising them with magnetic nanoparticles (MNPs) to target the therapeutics by localising them using magnetic fields. An alternating magnetic field induces remote heating of the particles (hyperthermia) triggering drug release or cell death. Furthermore, MNPs are diagnostic MRI contrast agents. There is considerable interest in MNP embedded vehicles for nanomedicine, but their development is hindered by difficulties producing consistently monodisperse MNPs and their reliable loading into vesicles. Furthermore, it is highly advantageous to "trigger" MNP production and to tune the MNP's size and magnetic response. Here we present the first example of a tuneable, switchable magnetic delivery vehicle for nanomedical application. These are comprised of robust, tailored polymer vesicles (polymersomes) embedded with superparamagnetic magnetite MNPs (magnetopolymersomes) which show good MRI contrast (R2* = 148.8 s(-1)) and have a vacant core for loading of therapeutics. Critically, the magnetopolymersomes are produced by a pioneering nanoreactor method whereby electroporation triggers the in situ formation of MNPs within the vesicle membrane, offering a switchable, tuneable magnetic responsive theranostic delivery vehicle.


Assuntos
Eletroporação , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Polímeros , Meios de Contraste , Aumento da Imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/ultraestrutura , Nanomedicina/métodos
18.
Soft Matter ; 2(12): 1076-1080, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32680210

RESUMO

We have used neutron reflectometry to characterize the swelling behaviour of brushes of poly[2-(diethyl amino)ethyl methacrylate], a polybase, as a function of pH. The brushes, synthesized by the "" method of atom transfer radical polymerization, were observed to approximately double their thickness in low pH solutions, although the p is shifted to a lower pH than in dilute solution. The composition-depth profile obtained from the reflectometry experiments for the swollen brushes reveals a region depleted in polymer between the substrate and the extended part of the brush.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...